2 / 2

Aufgabenstellung:

Die Schaltung nach Bild a enthält einen Kondensator mit der Kapazität und den Wirkwiderstand . Die Eingangsspannung hat den zeitlichen Verlauf (die Fourier-Reihe) .
Hierbei beträgt die Frequenz der Grundschwingung .

a) Es ist der zeitliche Verlauf der Ausgangsspannung zu ermitteln.

Abbildung

a) Gegebene Schaltung, b) Schaltung bei Betrachtung der Grundschwingung
c) Schaltung bei Betrachtung der dritten Oberschwingung

Lösungsweg:

Drücke auf "Aufdecken" um dir den ersten Schritt der Lösung anzuzeigen

a) Verlauf der Ausgangsspannung

Damit erhalten wir mit der Kreisfrequenz der Grundschwingung

für die gesuchte Ausgangsspannung den zeitlichen Verlauf

Der Kondensator hat bei der Frequenz den Blindwiderstand

Die in der Eingangsspannung enthaltene Grundschwingung mit dem Scheitelwert verursacht am Ausgang der Schaltung nach der Spannungsteilerregel eine Spannung mit gleicher Frequenz und dem Scheitelwert

Der vorhandene Phasenverschiebungswinkel beträgt

Das bedeutet in Bild b, dass die Grundschwingung der Ausgangsspannung der Grundschwingung der Eingangsspannung um voreilt.

Entsprechend ergeben sich für die vorhandene Oberschwingung (Bild c) die Werte, wenn wir berücksichtigen, dass der Blindwiderstand des Kondensators in diesem Fall beträgt,

Lösung: