Differenzierbarkeit

Thema suchen

Theorie:

Differenzierbarkeit

Eine Funktion ist an der Stelle differenzierbar wenn der Differenzenquotient dieser Stelle existiert. Ist die Differenzierbarkeit gezeigt in allen Punkten, so existiert die Ableitungsfunktion und die üblichen Regeln zum Ableiten dürfen angewendet werden.

Differenzenquotient :

Dies ist gleichbedeutend mit folgendem Ausdruck:

Vorgehen

Differenzierbarkeit prüfen

Die elementaren Funktionen sind in der Regel differenzierbar. Zu untersuchen sind folgende Stellen:

  • Beträge: Beträge verursachen i.d.R. einen "Knick" in Funktionen an den Stellen wo der Ausdruck im Betrag sein Vorzeichen wechselt. Dort sind sie meistens nicht differenzierbar.

  • Übergangsstellen: Zusammengesetzte Funktionen sind in den Übergangsstellen nur differenzierbar, wenn sie gleichmäßig in einander übergehen (selbe Steigung an Übergangsstelle).

Aufgaben:

Aufgabe 1

Untersuche, ob an der Stelle differenzierbar ist mit :

üü

Aufgabe 2

Untersuche die Funktion auf Differenzierbarkeit:

üü

Inhalte erstellen:

Thema vorschlagen
Theorie erstellen
Aufgabe erstellen
logo

Zurück nach oben

FÄCHER:
Mathematik
Elektrotechnik
Technische Mechanik
Physik
Regelungstechnik
für STUDIERENDE:ZusammenfassungenMaterialpoolUnternehmen entdeckenJobs finden
LINKS:FacebookInstagramMAX TALENT für UnternehmenMAX ACADEMY
für UNTERNEHMEN:DatenschutzNutzungsbedingungenImpressum