Eigenwerte

Thema suchen

Wähle ein Thema:

Eigenwerte, Eigenvektoren, Eigenraum

Diagonalisierung

Definitheit prüfen

Theorie:

Eigenwerte, Eigenräume und Eigenvektoren

Um die Eigenwerte, Eigenvektoren oder Eigenräume einer Matrix zu berechnen, gehe wie folgt vor:

Vorgehen

Eigenwerten, Räume und Vektoren

  1. Bestimme das charakteristische Polynom von über . Ziehe dazu jeweils ein von den Einträgen der Hauptdiagonalen ab und berechne anschließend die Determinante.
  2. Die Eigenwerte entsprechen den Nullstellen des charakteristischen Polynoms.
  3. Bestimme jeweils den Eigenraum zu jedem gefundenen Eigenwert mit
    Du solltest hier bei jeder Berechnung unendlich viele Lösungen erhalten, also immer eine Lösungsmenge mit mindestens einem Parameter.
  4. Einen passenden Eigenvektor erhälst du nun, indem du jeweils einen Vektor aus dem zugehörigen Eigenraum auswählst. Der Nullvektor ist dabei allerdings nicht zulässig.

Die Eigenwerte und Vektoren brauchst du z.B. um eine Matrix zu diagonalisieren.

Inhalte erstellen:

Thema vorschlagen
Theorie erstellen
Aufgabe erstellen
logo

Zurück nach oben

FÄCHER:
Mathematik
Elektrotechnik
Technische Mechanik
Physik
Regelungstechnik
für STUDIERENDE:ZusammenfassungenMaterialpoolUnternehmen entdeckenJobs finden
LINKS:FacebookInstagramMAX TALENT für UnternehmenMAX ACADEMY
für UNTERNEHMEN:DatenschutzNutzungsbedingungenImpressum