Unbeschränkte Folgen divergieren


by Mathe für Nicht-Freaks

(Analysis 1 )

In diesem Kapitel werden wir sehen, dass unbeschränkte Folgen divergieren müssen. Daraus werden wir folgern, dass konvergente Folgen beschränkt sein müssen.

Unbeschränkte Folgen divergieren

Im Kapitel Konvergenz und Divergenz beweisen haben wir bereits gezeigt, dass die Folge divergiert. Wir hatten ausgenutzt, dass diese Folge über alle Grenzen hinauswächst. Wenn wir nämlich ein beliebiges festhalten, dann gibt es ein mit . Auch für alle mit ist und damit

Unendlich viele Folgenglieder von liegen damit außerhalb der Umgebung . Deshalb kann nicht gegen konvergieren. Sonst müssten fast alle Folgenglieder von in liegen, was aber nicht der Fall ist. Weil beliebig gewählt wurde, kann keinen Grenzwert besitzen und muss also divergieren.

Diese Beweisskizze können wir auf beliebige unbeschränkte Folgen verallgemeinern. Wir hatten ausgenutzt, dass beliebig groß wird. Erinnern wir uns an die Definition einer unbeschränkten Folge:

 
Definition

Eine Folge ist unbeschränkt, wenn es für alle unendlich viele Folgenglieder mit gibt.

Diese Eigenschaft können wir verwenden, um folgenden Satz zu beweisen:

 
Definition

Unbeschränkte Folgen divergieren
Sei eine unbeschränkte Folge. Für alle gibt es also unendlich viele Folgenglieder mit Dann muss die Folge divergieren.

 
Hinweis

Unbeschränkte Folgen divergieren
Mit diesem Satz können wir beweisen, dass eine Folge divergiert. Wenn wir nachweisen können, dass eine Folge unbeschränkt ist, wissen wir also sofort. dass sie divergiert.

 
Vorgehen

Unbeschränkte Folgen divergieren
Genau wie in der obigen Beweisskizze nehmen wir eine beliebige Zahl und zeigen, dass die unbeschränkte Folge nicht gegen konvergieren kann. Dafür müssen wir zeigen, dass für unendlich viele größer als eine fixe Zahl ist. Wir müssen also nach unten abschätzen. Benutzen wir hierzu die umgekehrte Dreiecksungleichung:

Wir wissen, dass unendlich viele größer sind als jede fixe Schranke , da unbeschränkt ist. Wählen wir Jetzt können wir wie in der Beweisskizze oben mit zeigen:

Aus folgt, dass nicht in der -Umgebung liegen kann. Damit kann aber nicht gegen konvergieren, was wir hier zeigen müssen.

Konvergente Folgen sind beschränkt

Beweis über Kontraposition

Laut dem obigen Satz müssen unbeschränkte Folgen divergieren. Mit Hilfe von Kontraposition können wir folgern, dass konvergente Folgen beschränkt sein müssen. Das Prinzip der Kontraposition lautet:

Obiger Satz ist die Implikation:

ist unbeschränkt divergiert


Also muss nach dem Prinzip der Kontraposition gelten:

divergiert ist unbeschränkt

Dies bedeutet dasselbe wie

konvergiert ist beschränkt

 

Wer daran zweifelt, dass Kontraposition tatsächlich funktioniert, kann sich die Wahrheitstafeln von und aufschreiben und vergleichen. Ein kleines Beispiel ist: "Wenn es regnet , wird der Boden nass ." Deshalb gilt auch: "Wenn der Boden nicht nass ist , kann es nicht regnen ." Aus der zweiten Implikation können wir umgekehrt auch die erste folgern. Durch die Kontraposition gilt also folgender Satz, den wir insbesondere in späteren Beweisen nutzen werden:

 
Definition

konvergente Folgen sind beschränkt
Jede konvergente Folge ist beschränkt. Wenn also eine Folge konvergiert, dann gibt es ein mit für alle .

 
Hinweis

Die Umkehrung des Satzes muss nicht gelten. Das bedeutet: Eine beschränkte Folge muss nicht konvergieren. Eine divergente Folge muss nicht unbeschränkt sein.

Ein Gegenbeispiel ist die Folge . Diese Folge ist beschränkt, jedoch nicht konvergent.